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This work is devoted to the description of an efficient unstructured
mesh generation method entirely based on the Delaunay triangutation,
The distinctive characteristic of the propesed methoed is that point
positions and connections are computed simultaneously. This resuit
is achieved by taking advantage of the sequential way in which
the Bowyer-Watson algorithm computes the Delaunay triangulation.
Two methods are proposed which have great geometrical flexibility,
in that they allow us to treat domains of arbitrary shape and topology
and to generate arbitrarily nonuniform meshes. The methods are
computationally efficient and are applicable bath in two and three
dimensions.  © 1993 Academic Press, Inc.

1. INTRODUCTION

When looking for the numerical solution of fluid dynamic
equations defined in the continuum such as the fuil poten-
tial, Euler, or Navier—Stokes equations, it is necessary to
select a finite number of points in the domain and to connect
them so as to define a grid, on which a discrete version of the
original partial differential problem is constructed.

There are two main classes of grids, which differ in the
way in which the mesh peints are connected to each other,
If the internal points are connected to their neighbours in a
way independent of their position, the mesh is called struc-
tured. When the pattern of the connections varies from
point to point, the mesh is called unstructured. In the struc-
tured case, the connectivity of the grid is implicitly taken
into account by storing the point data into the elements of
a matrix. On the contrary, the connectivity of unstructured
grids must be explicitly described by an appropriate data
structure, thus making the solution algorithms on unstruc-
tured grids more expensive than those on structured grids.
However, the greater geometrical flexibility offered by
unstructured grids can be crucial when dealing with
domains of complex geometry or when the mesh has to be
adapted to complicated features of the flow field. The
increasing attention that such problems have received in
recent years has therefore made unstructured grids of
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common use in computational fluid dynamics. A great effort
has consequently been directed toward the development
of unstructured mesh generation methods. Among the
available techniques, those based on the Delaunay tri-
angulation are particularly suited to an adaptive solution
strategy since the Delaunay construction allows the addi-
tion of new points to an existing triangulation without the
need for remeshing the whole domain.

In earlier applications of Delaunay triangulation to
unstructured grid generation, the Delaunay construction
has been used to conmect a preassigned distribution of
points, so as to obtain a triangulation satisfying certain
geometricai properties. In the most common mesh genera-
tion methods of this class, in fact, the spatial distribution
of the mesh points is determined by means of some
appropriate technique in a step preceding that of estab-
lishing their connections (see, e.g., Baker [1], Jameson,
Baker, and Weatherill [47, and Weatherill { LOT).

In this work we describe a completely different approach,
which takes full advantage of the sequential way in which
the Delaunay trianguiation is constructed. The distinctive
characteristic of the new method is that point positions and
connections are computed simultaneously. Two different
mesh generation algorithms will be considered in the
present work, the only difference between them being the
way in which points are positioned in the domain. Both
algorithms are of the greatest logical simplicity allowing
the treatment of domains of arbitrary shape and a complete
control of the size of the triangles over the computational
domain. Moreover, the algorithms are computationally
very efficient and are applicable to two- and three-
dimensional problems.

The structure of the paper is organized as follows. In
Section 2 we recall the well-known Delaunay triangulation
and the associated Dirichlet tessellation. Section 3 describes
how Bowyer—Watson algorithm, which is widely employed
to construct the Delaunay triangulation, can be con-
veniently used in the context of mesh generation. In
Section4 we introduce an initial triangulation of the
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boundary points which represents the starting point of the
two mesh gencration methods to be described in detail in
Sections 5 and 6, respectively. In Section 7 the potentialities
offered by the proposed algorithms are investigated by
applying them to some representative test cases. Section 8 is
devoted to the conclusions.

2. DIRICHLET TESSELLATION AND
DELAUNAY TRIANGULATION

A systematic way for generating a triangulation of a set of
peints can be obtained by considering a geometrical con-
struction first introduced by Dirichlet in 1850. Consider an
arbitrary set of points P, i=1, .., N. For any point P, we
define a convex polygon ¥; characterized by the property
that every point of ¥; is nearer to P, than to any other P,.
These convex polygons are called Voronoi regions and their
union is called Dirichlet tessellation.

The boundary between two Voronoi regions ¥; and ¥;
facing each other lies midway points P, and P, and is there-
fore a segment of the axis of the line which joins P; with P;.
By connecting only those points whose Voronoi regions
have a common edge, a triangulation known as Delaunay
triangulation is obtained. An example of a Dirichlet
tessellation with the associated Delaunay triangulation of
the convex hull of a small set of points i1s shown in Fig. 1.

This geometrical construction can be easily extended to
more dimensions. In the three-dimensional space, for exam-
ple, the boundary between two facing Voronai regions is a
plane polygon, and, by connecting only the points whose

FIG. 1. Dirichlet tessellation (dashed) and Delaunay triangulation
(continuous) of the convex hull of a small set of points.
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Voronai polyhedra have a polygon in common, a set of
tetrahedra is obtained.

It should be noted that Delaunay triangulations and
Dirichlet tessellations can be considered the geometrical
dual of each other, in the sense that for every triangle &,
there exists a vertex C, of the tessellation, and conversely,
for every polygon ¥ there exists a vertex F; of the triangula-
tion (see Fig. 1). In addition, for every edge of the triangula-
tion there exists a corresponding segment of the Dirichlet
tessellation. In the following, vertices and segments of the
Dirichlet tessellation will be also called Voronoi vertices
and Voronoi segments, respectively.

3. BOWYER-WATSON ALGORITHM AND
MESH GENERATION

The Delaunay triangulation recalled in the preceding
section is a construction characterized by certain specific
geometrical properties. Some of these properties are of a
local nature and allow us to devise algorithms which com-
pute the Delaunay triangulation of an arbitrary set of points
only by means of a sequence of purely local operations.

Among the methods belonging to this class, the Bowyer
[2] and/or Watson [9] algorithm is very convenient in a
mesh generation procedure. The method is based on the so-
called circumcircle property which guarantees that no point
of a Delaunay triangulation can lie within the circle cir-
cumscribed to any triangle. The Bowyer—Watson algorithm
15 essentially a “reconnection” method, since it computes
how an existing Delaunay triangulation is to be modified
because of the insertion of a new point. A simple example
showing the sequence of operations needed to insert a new
point into an existing triangulation and to generate a new
trianguiation is given in Fig. 2. The algorithm removes from
the existing grid all the triangles which violate the circum-
circle property because of the insertion of the new point. It
can be shown that (1) all these triangles are always con-
tiguous, thus forming a connected cavity surrounding the
newly inserted point, and that (2) by jeining the vertices of
this cavity with the internal new point, a Delaunay tri-
angulation is always obtained [ 2, 9]. As a consequence, the
Delaunay triangulation of an arbitrary set of points can be
constructed in a purely sequential manner starting from a

FIG. 2. Reconnection of an existing grid around a newly inserted
point by means of the Bowyer—-Watson algorithm.
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very simple initial Delaunay triangulation enclosing all
points to be triangulated (for example, that formed by two
adjacent triangles} and adding one point after another until
all points have been considered.

The algorithm efficiency depends on how quickly the
search for the triangles to be deleted at each point insertion
is performed and this is made much easier by the knowledge
of the neighbouring triangles to each triangle. In fact, since
all the triangles to be deleted are always contiguous, a tree
search among neighbouring triangles can be used to find all
the other triangles to be deleted after the first one. In the
typical case, the number of triangles to be deleted at
each point insertion does not depend on the number of ail
existing triangles. As a consequence, if the information
pertaining to the neighbouring triangles is available and
an O(log N} multidimensional search for the first triangle to
be deleted is employed, the algorithm can compute the
Delaunay triangulation of a set of N points in (N log N)
operations. In special cases, however, the number of
triangles to be deleted at each peint insertion can be very
large. In the worst possible situation, when all existing
triangles have to be deleted at cach point insertion, the
operation count of the Bowyer—Watson algorithm degrades
to O(N?). It has, however, been shown that a proper order-
ing of the input points can cure this problem,

Unstructured mesh generation techniques which use the
Bowyer—Watson algorithm to compute the connections of a
preassigned distribution of points have been successfully
employed for both two- and three-dimensional problems
[1,4,10].

The sequential nature of the Bowyer—Watson algorithm
can be further exploited to compute mesh point positions
and connections simultaneously if, starting from an
available triangulation with N points, the position of the
(N+1)th point is chosen according to some suitable
geometrical criterion which depends on the existing tri-
angulation. Within such an approach, it is very important to
choose carefully the position where to insert the new point
in the existing mesh, to avoid a nonsmooth point distribu-
tion. Even if the Delaunay construction guarantees in
advance that the points will be connected so as to produce
triangles as equilateral as possible, a poor point distribution
can eventually lead to an unsatisfactory triangulation. In
this respect, the vertices and the segments of the Dirichlet
tessellation are promising locations for placing a new point
since they represent a geometrical locus which falls, by
construction, midway between the triangulation points. In
both cases, the new point is inserted in a position which
avoids the formation of edges that are too short so that it is
unlikely for the new triangles to have a very elongated
shape. Two different mesh generation methods in which the
new point is inserted at a Voronoi vertex or on a segment of
the Dirichlet tessellation will be considered in Sections 5
and 6, respectively.
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In the first method, which follows closely an idea
originally introduced in the pioneering work of Holmes and
Snyder [5], the new point is introduced in the existing
triangulation at the Voronoi vertex (centre of the cir-
cumscribed circle) corresponding to the “worst” triangle,
defined as the one having the most different circumscribed
circle radius in relation to that required for the final grid. In
this way, since the worst triangle is obviously eliminated
from the triangulation, we improve the quality of the grid at
every new point insertion. The mesh generation process is
terminated when all “bad” triangles have been eliminated,
leaving a grid formed only by suitable triangles.

In the second method here described, the new point is
instead inserted in an attempt to generate one or possibly
several new triangles having from the very beginning the
size prescribed for the final grid. This result is accomplished
by placing the new point along a segment of the Dirichlet
tessellation, in a position carefully chosen to guarantee that
the newly generated triangles have the sought for size. As
will be shown in the examples reported in Section 7, it turns
out that the grids generated by means of the second method
are characterized by triangles of a generally better shape in
comparison with those obtained by means of the first
method. This is especially true for triangles located near the
boundaries of the domain, a region where a regular spatial
discretization is of crucial importance to perform accurate
computations.

Both mesh generation algorithms offer complete control
of the triangle sizes and allow an implementation with
operation count O(N log N). This result is accomplished
by means of a proper ordering of the triangle data.
Sophisticated multidimensional efficient search routines are
therefore not required by the proposed methods.

4. INITIAL TRIANGULATION OF
THE BOUNDARY POINTS

Both mesh generation methods described in the paper
choose the position of the (N + 1)th mesh point on the basis
of the grid connecting the aiready existing N points. It is
therefore necessary to provide an initial grid to start the
mesh generation process. To this aim, all the boundary
points are triangulated by means of the Bowyer—Watson
algorithm,

The initial boundary triangulation must be body conform-
ing; ie., all boundary edges must be included in the tri-
angulation. Since the Delaunay triangulation of a given set
of points is a unique construction, there is no guarantee
that, for an arbitrary distribution of boundary points,
the resulting triangulation will be boundary conforming.
However, by performing a check on the initial trianguia-
tion, all possible missing boundary edges can be detected.
It can be proved that, by repeated insertions of new mesh
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points at the midpoint of the missing boundary edges, a
boundary conforming triangulation is always obtained; see,
for instance, [11]. This initial check is a relatively cheap
procedure, since the number of boundary points in the mesh
is generally small compared to the total number of mesh
points to be generated—asymptotically O(ﬁ) in two
dimensions.

Two different types of triangles can be identified at this
stage—the triangles internal to the domain to be meshed
and the triangles external to it. It is important to keep track
of both internal and external triangles. Internal triangles
must be considered in view of the fact that the new mesh
points must be generated inside the domain. Moreover, to
prevent the elimination of boundary edges during mesh
generation, it is sufficient to check that no external triangle
is ever deleted from the triangulation. In this way, the
boundary conforming property possessed by the initial
triangulation remains invariant during the entire mesh
generation procedure,

Different strategies can be adopted to deal with a point
that would cause an external triangle to be deleted. For
example, an attempt could be made to find a different loca-
tion for the new point. Alternatively, the boundary could be
locally refined. In this work, a very simple strategy turned
out to be effective—points which would cause an external
triangle to be deleted are simply discarded. In principle, this
procedure could lead to a grid which locally does not satisfy
the length scale criterion. Numerical investigation seems,
however, to indicate that this simple boundary treatment,
when used in conjunction with the point generation
methods described in the following sections, leads in
practice to a fairly regular point distribution near to the
boundaries.

In the following sections we will describe in detail the two
aforementioned strategies for defining the position of the
new mesh point inside the domain on the basis of an existing
set of internal triangles.

5. VORONOI-VERTEX POINT
INSERTION METHOD

As outlined in Section 3, a promising location to place a
new point is the centre of the circle circumscribed to a
triangle. With this choice, the new point is in fact inserted
in a position where, by the circumcircle property, the grid
is coarsesl.

The choice of the “insertion triangle,” namely the triangle
where to insert the new point, can be done according to dif-
ferent criteria. For example, in the grid generation method
of Holmes and Snyder, the new points are introduced to
eliminate in turn triangles with large areas and triangles
having bad “aspect ratios,” the latter being defined as the
ratio between of the radii the inscribed and circumscribed
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circles. In this way, all triangles that are large or far
from equilateral are eliminated from the triangulation,
which therefore tends to cause ciustering according to the
geometrical discretization of the boundary points. A disad-
vantage of the method is that the coarseness of the tri-
angulation over the entire domain is controlled only by the
graduation of the boundary points, so that the dimensions
of the internal triangles far from the boundaries may turn
out to be inappropriate for the considered problem.

A simpie insertion criterion i1s suggested here which
allows control of the grid coarseness over the entire domain.
We begin by defining a function f(x) which prescribes the
value of a characteristic dimension of the triangles, say the
radius of the circumscribed circle, as a function of the
triangle position. We define for each triangle 4, with
circumscribed circle radius p, the ratio

P
f(xk)’

Otk=

where x, indicates the position of the centre of the circle cir-
cumscribed to the triangle 7,. By inserting the new mesh
point at the centre of the circumscribed circle having the
largest value of a, it is possible to reach eventually a mesh
in which max, «, < 1, which is exactly what we are looking
for, assuming that f(x) represents the value prescribed for
the radius of the circumcircle with centre at x.

The actual expression of the size function f(x) can be
given in a variety of ways. For instance, f(x) can be con-
structed by considering a piecewise linear function obtained
by interpolating prescribed nodal values over a convenient
background mesh. In this way, very general size functions
can be obtained, the only input data required being the
backpoint coordinates and the corresponding size function
values. The background mesh can in fact be constructed
easily by means of the Bowyer—Watson algorithm, given the
backnode coordinates, and, provided that a triangulation of
the backnodes is available, the size function f(x) can be
computed by means of standard triangular linear finite
clements.

Beside allowing complete control of the triangle size
over the domain, the proposed method also bypasses the
efficiency bottleneck of the Bowyer—Watson algorithm,
caused by the need to find the first triangie to be deleted at
every point insertion. In fact, this iriangle can be chosen to
be the one with the largest value of a. Then, an efficient
method is obtained by regarding all the internal triangles as
a heap list, ordered according to the value of o, and by
deleting the triangle at the top of the list. All other triangles
to be deleted at each point insertion can be found by means
of an inexpensive O(1) tree search looking at neighbouring
triangles. Since any removal or insertion of new clements in
the list can be achieved in O(log N) operations (see, e.g.,
[31), we obtain an overall O(N log N) method. The first
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mesh generation method can be summarized therelore as
follows:

1. Triangulate all the boundary points by means of the
Bowyer—Watson algorithm.

2. Check if the triangulation is body conforming and
recover all missing boundary edges.

3. Divide all triangles into internal or external with
respect to the computational domain,

4, Define a non-dimensional ratio « and evaluate its
value o, for each internal triangle 7, .

5. Order the internal triangles according to a,.

6. Insert a new point at the centre of the circumcircle of
the triangle at the top of the ordered list.

7. Regenerate the triangulation by mecans of the
Bowyer—Watson algorithm, possibly discarding those
points which would cause the deletion of an external
triangle.

8. Insert the newly generated triangles into the list of the
internal triangles.

9. If max, a, > 1 return to step 6, else stop.

6. VORONOI-SEGMENT POINT
INSERTION METHOD

{n this section, the second mesh generation method
relying on the Bowyer—Watson algorithm is described. The
basic difference between this method and that presented in
the previous section is that the new mesh point is taken on
a segment of the Dirichlet tesseilation, instead of at a
Voronoi vertex. Furthermore and more important, instead
of eliminating the worst triangle as in the first method, the
new point is here inserted in an attempt to generate
immediately one or possibly more new triangles having the
required size from the very beginning. It turns out that the
quality of the meshes obtained by means of the second
method appears to be generally superior to that of the
meshes provided by the previous one.

6.1. Point Insertion Strategy

The starting point of the mesh generation is an initial
boundary triangulation obtained by connecting all bound-
ary points as described in Section 4. Since the new point is
introduced on a segment of the Dirichlet tessellation and

<
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Accepted {Done)
Internal Actjve
Nonaccepted
Waiting

FIG. 3. Hierarchical structure of triangle types.
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there 1s a one-to-one correspondence between the segments
of the tessellation and the edges of the triangulation, the
position of the new point wiil be established in a way which
depends on suitable couples of neighbouring triangles and
their common edge. To this aim, it is convenient to sub-
divide all triangles present in the initial boundary triangula-
tion into several types as explained in the following.

In the first place, it is necessary to distinguish between
triangles exrernal and triangles /nternal to the domain, in
the same way as described in Section 4. Then, the internal
triangles must be further subdivided into two types—
triangles already having and triangles not yet having the
size requested by their position in the domain. These two
types of internal triangles will be referred to as accepted and
nonaccepted triangles, respectively. In most common cases,
the internal triangles of the intial boundary triangulation
are all nonaccepted triangles. Since points are inserted by
considering nonaccepted triangles with a neighbour already
having the required size, it is necessary to introduce a
further subdivision of the nonaccepted triangles—namely,
active and waiting triangles. An active triangle is defined as
a nonaccepted triangle having at least one accepted or one
external triangle among its neighbours. All the nonaccepted
triangles not active are considered waiting. A waiting
triangle is therefore a triangle surrounded only by active or
waiting triangles. For the sake of clarity, the hierarchical
structure describing all the types of triangles involved in the
mesh generation process is depicted in Fig. 3.

The new point is always inserted by considering the
Voronoi segment associated with a triangulation edge
shared by the active triangle with largest circumscribed
circle radius and cne of its accepted and/or external
neighbours. In this way, by virtue of the circumcircle
property of the Delaunay triangulation, new points are
automatically positioned in regions of the domain, where
the mesh is coarsest. If more than one accepted and/or
external neighbour exists, the segment associated with the
shortest triangulation edge is chosen. This choice is purely
empirical, and other possibilities might give good results as
well. All test cases reported in Section 7 have, however, been
obtained according to the above criterion.

CA/‘-E——-m

FI1G. 4. Accepted or external triangle (feft), active triangle (rightj, and
the new point X.
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6.2. Positioning of the New Point

The position of the new point along the Voronoi segment
is chosen in an attempt to generate a new triangle having the
size prescribed at its location. With reference to Fig. 4, let &
be the segment of the Dirichlet tessellation associated
with the triangulation edge PQ in common with the two
aforementioned neighbouring triangles, the left being the
accepted or external triangle and the right being the active
one. The new point X is placed on & on the side of the active
triangle in a position chosen so that the triangle formed by
connecting X with P and Q has the size prescribed for the
final grid. The position of X is computed as follows. Let C,
be the centre of the circle circumscribed to the active
triangle (the right endpoint of segment % in Fig. 4), and let
M be the point in common to edge PQ and segment &
(midpoint of PQ). Furthermore, let

Par=f(Xp)

be the value of the circumscribed radius prescribed for the
final triangulation at point x,, (obtained, as usual, by
means of a background grid). Ideally, we would like to
locate the new point X on segment % at the intersection of
& with the circle passing through points P and ¢ and
having circumscribed radius equal to p,,. However, it might
happen that the prescribed value g, is not appropriate,
since any circle through P and Q has a radius p > 3 |PQ|.
Furthermore, a real intersection point X exists only for
circles having a radius smaller than that of the circle passing
through P, Q,land C,:ie.,

where p=1|PQ| and ¢q=|C,M| (see Fig. 4). For these
reasons, a limited value of p,, is defined as

2 2
. . pta
f » = Min [max{pMp), 27 ]

The position of the new point X is therefore defined by the
relationship
X=X, +de,

where the distance d= [XM)| of X from M and the unit
vector e are

d=ﬁM+\/ﬁi4_P2f

Xy~ Xy
e=—"
IXCA - xC,ugl
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Now, it is important to note that it is not assured that, by
inserting X as explained above and then retriangulating, the
triangle XPQ will be actuailly produced by the Bowver—
Watson algorithm. However, point X is positioned by
construction inside the circle circumscribed to the active
triangle, which is therefore always deleted from the tri-
angulation. As a consequence, we are guaranteed that the
new triangulation will contain two edges PX and QX
having by construction a length consistent with that
required for the final triangulation. As a matter of fact, it is
inessential whether the triangle XPQ is generated or not,
since we are guaranteed that a Delaunay triangulation
always connects points so as to produce triangles as equi-
lateral as possible.

As a final remark, note also that, when % is too short
with respect to {PQ|, the new point will be inserted at the
Voronoi vertex of the active triangle. In this special situa-
tion, the point location is therefore coincident with that
generated by the method described in Section 5.

6.3. Assignment of the New Triangles

As anticipated in Section 3, at each point insertion the
Bowyer—Watson algorithm generates a new triangulation
which differs from the previous one only locally around the
newly inserted point. For this reason, and by virtue of the
definitions employed to classify the triangles, a new grid in
which all triangles are classified consistently with the defini-
tions given in Section 6.1 can be constructed by considering
only (1) triangles having the new point as one of their ver-
tices (new triangles) and (2) triangles adjacent to the new
ones (see Fig. 5). At each point insertion, these triangles

FIG. 5. The new triangles gemerated by the Bowyer—Watson
algorithm because of insertion of point X (continuous) and their
neighbours (dashed).
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have to be reassigned to the different types described above
according to their size and relative position. As a conse-
quence, new accepted triangles will replace old nonaccepted
ones starting from the boundary and moving to the interior
of the domain, in a fashion similar to that characterizing the
triangle propagation occurring in methods in which new
points are gencrated along a propagation front, such as that
originally proposed in [6] for two-dimensional applica-
tions and subsequently extended to three dimensions in [7].

There is no need to subdivide the new triangles into exter-
nal and internal, since, by construction, no external triangle
1s ever deleted by the Bowyer—Watson algorithm and all the
new triangles are therefore internal. However, it is necessary
to subdivide the new triangles into accepted or nonaccepted
and to further subdivide the new nonaccepted triangles and
their nonaccepted neighbours into active or waiting.

The new triangles %, are classified as accepted or non-
accepted depending on their circumcircle radii p,. For every
new triangle, consider the midpoint M, of the edge opposite
to the new point (see Fig. 5) and evaluate

par=SfIX M)

If the ratio

Poi 5
2

the triangle 7, is considered accepted, otherwise it is con-
sidered nonaccepted. The value of & is purely empirical.
Good results have been obtained choosing & = 1.5. The new
nonaccepted triangles are then subdivided into active and
waiting in a way that is analogous to that described in
Section 6.1.

Since no external triangle is ever deleted, there is no need
to subdivide triangles adjacent to the new ones into external
and internal. In fact they will simply retain the external or
internal attribute they had prior to the new point insertion.
Moreover, since the insertion of the new point does not
affect the geometry of the triangles adjacent to the new ones,
it is not necessary to subdivide these triangles into accepted
or nonaccepted. As a consequence, also the accepted or
nonaccepted attribute will be retained. It is, however,
necessary to perform a subdivision of the nonaccepted
triangles adjacent to the new ones into active or waiting,
according to the same rules used for the new triangles. The
mesh generation method stops when there are no more
active triangles left.

An example showing the triangle progression during the
mesh generation process is given in Figs. 6 and 7 for the
simple case of an eliiptical domain, where a uniform triangle
distribution has been required.

As explained above, the new point is inserted on a
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Voronoi segment relative to the active triangle having the
largest circumcircle radius, and this implies that computa-
tional efficiency can be achieved by sorting active triangles
according to the values of their radii. The second mesh
generation algorithm can therefore be summarized as
foilows:

1. Triangulate all the boundary points by means of the
Bowyer—Watson algorithm.

2. Check if the triangulation is body conforming and
recover all missing boundary edges.

3. Divide all triangles into internal and external. Divide
internal triangles into accepted and nonaccepted on the

] —

FIG. 6. Two successive steps of the mesh generation of an elliptical
domain, “D” indicates accepted (done) triangles, “4™ active triangles,
and “W" waiting triangles. The first step shows the initial boundary
triangulation.
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FIG. 7. Two successive steps of the mesh generation of an elliptical
domain, D" indicates accepted (done) triangles, “A4" active triangles, and
“W”™ waiting triangles. The last step shows the final triangulation.

basis of their circumcircle radii. Divide nonaccepted
triangles into active and waiting.

4. Order the active
circumscribed circle radii.

triangles according to their

5. Consider the top element of the ordered list of the
active triangles and insert the new point according to the
Voronoi segment insertion criterion.

6. Regenerate the triangulation by means of the
Bowyer—Watson algorithm.

7. Divide new triangles into accepted and nonaccepted
on the basis of their circumcircle radii. Divide new non-
accepted triangles into active and waiting,
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8. Divide nonaccepted triangles adjacent to the new
ones into active and waiting.

If the active triangle list 1s empty stop, else go to step 5.

7. MESH GENERATION EXAMPLES

Several examples showing the potentialities offered by the
proposed methods are given in this section. In the first place,
we compare the relative merits of the two methods
described so far. The performance of the second method is
subsequently investigated by triangulating a domain of
complex geometry. A more realistic example is then
reported, showing a grid generated with the method
described in Section 6 around a multiple airfoil configura-
tion suitable for Euler computations. Finally, a simple
example of three-dimensional grid generation for a cubical
domain is displayed.

1.1. Comparison of the Two Methods

Four triangulations of a simple elliptical domain are
here presented. A simple rectangular background grid has
been employed to generate the four meshes. The differences
between the two methods are investigated examining (1} a
grid, where a uniform distribution of triangles over the
entire domain has been required, and (2} a grid in which a
clustering of the triangles along one of the diagonals of the
background rectangle is obtained by imposing triangle
dimensions at the vertices of the backgrid rectangle in a
chequerboard fashion, the higher value being ten times the
lowest.

AN bYa
ATHAKR]
VL]

FIG. 8. ‘Triangulation of an elliptical domain. Uniform triangulation
generated by the first method.
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FIG. 9. Triangulation of an elliptical domain. Diagonally clustered
triangulation generated by the first method.

Figures 8-10 show the results obtained by means of the
first method, while Figures 11-13 show the results obtained
with the second method. Figures 10 and 13 show the
improvements obtainable for the mesh generated by means
of the first and the second methods, respectively, by slightly
repositioning all mesh points using a standard mesh
smoothing (Laplacian filtering, see, e.g., [11]).

The two mesh generation methods can be compared
quantitatively by defining an “aspect ratio” ¢ as the ratio
between twice the inscribed and circumscribed circle radii,
With this definition, o ranges between 0 and 1. In fact, for

E}L A SRS
A FAOTAVA i AR
TR S

20

b

Pt

s

| TS
SRRPEEKK :

FI1G. 10. Triangulation of an elliptical domain. Diagonally clustered,
smoothed trianguiation generated by the first method.,

FIG. 11, Triangulation of an elliptica dornain. Uniform triangulation
generated by the second method.

a degenerate triangle having an angle with value approach-
ing 0 or = the value of ¢ approaches 0, while for an equi-
lateral triangle the aspect ratio value is equal to 1. Table I
shows the fraction of triangles having aspect ratio ¢ falling
between prescribed values ¢, and o, for the diagonally
clustered triangulation computed with Method 1, Method t
with smeothing, Method 2, and Method 2 with smoothing.
For this problem, both mesh generation methods never
generate triangles having an aspect ratio with vajue less
than 0.35.

By comparing Fig. 8 with Fig. 11 it is apparent that the

FIG. 12. Triangulation of an elliptical domain. Diagonally clustered
triangulation generated by the second method.
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FIG. 13. Trangulation of an elliptical domain. Diagenally clustered,
smoothed triangulation generated by the second method.

second method is capable of generating a much more
regular triangulation than the first one for uniform grids.
Table I shows how this greater regularity is maintained also
when a nonuniform grid distribution is prescribed. Note in
particular that the triangles generated near the boundaries
of the domain displayed in Figs. 12 and 13 have a much
better “aspect ratio” in comparison with those shown in
Figs. 9 and 10. Despite many efforts, no reasonable way to
alleviate this problem has been found for the first method.
Figure 14 shows the CPU time versus the number of tri-

TABLE I

Aspect Ratio Distributions

Fraction of triangles

Aspect ratio Method 1 Method 2

a, 04 Standard  Smoothed Standard Smoothed
0.35 0.40 0.00059 0.00000 0.00000 0.00000
0.40 0.45 0.00117 0.00117 0.00000 0.00000
045 050 0.00351 0.00000 (.00000 0.00000
050 055 0.00527 0.00059 0.00060 0.00000
055 060 0.01347 0.00000 0.00658 0.00060
060  0.65 0.01288 0.00000 0.00598 0.00120
065 070 0.02342 0.00351 0.00957 0.00060
070 075 0.02869 0.00761 0.02751 0.00120
0.75 0.80 0.06792 0.01288 0.04844 0.01316
080 085 0.15398 0.03396 .07596 0.01316
0.35 0.90 0.18150 0.07436 0.10176 0.04785
090 093 0.20433 0.22834 0.16208 0.15550
095 1.00 0.30328 0.63759 0.56160 0.76675
Note. Diagonally clustered triangulation generated with Method 1,

Method 1 with smoothing, Method 2, and Method 2 with smoothing.
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FIG. 14. Timing for the second mesh generation method.

angles for a uniform mesh computed by means of the second
mesh generation method. The solid line represents the least
squares approximation of the actual CPU time (diamonds
in the figure) with the estimated O(Nlog N) time. This
simple test case shows clearly the advantages offered by the
second mesh generation method over the first. Due to this
superiority, all the remaining examples have been limited to
the investigation of the performances of the second method.

7.2. Triangulation of a Multiply Connected Domain

The general applicability of the method is well demon-
strated by this example which shows the capability of the
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FIG. 15. Multiconnected domain. Triangulation of the entire domain.
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method to treat domains of complex gcometry as well as the
possibility to prescribe a nonuniform mesh distribution in a
completely arbitrary way.

Figure 15 shows the entire domain triangulated. A back-
ground grid imposing a constant value for the triangle
dimension in the square defined by joining the centres of the
five circles has been employed to generate the grid. Figure
16 shows an enlargement of the triangulation in the region
laying among the circles. Tt is to be noted that the high
quality displayed by the triangles obtained in this test case
is a result due to the combined effect of Delaunay triangula-
tion and the proposed point-generation strategy.

13. Triangulation around a Multi-airfoil Configuration

The last two-dimensional example shows the results
provided by the second method for a realistic application,
Le., the mesh generated around a multiple element airfoil
configuration [8]. The complete mesh extends for some 10
chords away from the airfoils. A small portion of the tri-
angulation surrounding the airfoil configuration is shown in
Fig. 17, while a detail of the triangulation in the channel
between the main airfoil and the maneuver flap is shown in
Fig. 18 and 19 without and with Laplacian smoothing,
respectively. The possibility of prescribing the size of the
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triangular elements as a function of their position in the
domain in a completely general way should be apparent
from the above figures. It is to be noted once again the
good quality possessed by triangles adjacent to the domain
boundaries, an essential feature for a grid intended for
accurate numerical computations.

7.4. Three-Dimensional Mesh Generation

A straightforward generalization of the second method
has been implemented and applied to a simple but not
trivial three-dimensional exarmple, which shows the poten-
tialities of the proposed method also for three-dimensional
applications. A simple cubical domain has been tetra-
hedronized, prescribing a nonuniform distribution of the
tetrahedra size.

The starting point for the three-dimensional mesh genera-
tion method is a boundary tetrahedronization obtained by
connecting a surface distribution of boundary points con-
structed by means of the two-dimensional method. From
this point on, by following the simple steps reported at the
end of Section 6, new points are generated inside the
domain, until all the internal tetrahedra have been classified
accepted.

Figure 20 shows one of the six (equal) faces of the cubical
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FIG. 16. Multiconnected domain. Enlargement of the triangulation of the region among the circles.
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FIG. 18. Multi-airfoil. Enlargement of the triangulation of the channel between the main element and the flap.
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FIG. 19. Muiti-airfoil. Enlargement of the smoothed triangul
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FIG. 20. Three-dimensional cubical domain. Surface triangulation of
one of the six (equal) faces of the cube.
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lation of the channel between the main element and the flap.

domain. Note the nonuniform triangle distribution over
the cube faces, which is matched by a corresponding
nonuniform distribution also in the interior of the cubical
domain.

The entire grid contains about 50,000 tetrahedral
elements and has been generated on a workstation HP835
in about half an hour of CPU time. Work is in progress to
extend the proposed method to treat three-dimensional
domains of complex geometry also.

8. CONCLUSIONS

Two mesh generation methods relying on the Bowyer—
Watson algorithm and computing point positions and
connections simuitaneously have been presented. The
methods distinguish themselves by the great simplicity and
geometrical flexibility, as demonstrated in all the test cases
presented in Section 7, and they allow an implementation
with operation count O(N log N). By virtue of Bowyer—
Watson algorithm, the proposed techniques can be easily
extended to three dimensions.

The first method is just a minor modification of the
method proposed by Holmes and Snyder in (5] and aliows
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control of the triangle dimension distribution on the
domain in a general and flexible way.

The second algorithm generalizes the ideas contained in
the first method but includes an original strategy to generate
mesh points in the domain. Although it bears some resem-
blance with ideas commonly considered in advancing front
techniques, this method, due to the full exploitation of the
geometrical properties of the Delaunay triangulation and
the associated Dirichlet tesseilation in conjunction with the
local nature of the Bowyer—Watson algorithm, provides a
completely new general procedure which eliminates the
need for the complex topological validity checks usually
employed by advancing front methods and avoids by
construction the closure difficulties which are sometimes
faced by this kind of method.

The second method appears to be capable of generating
grids characterized by generally better shaped triangles in
comparison with the first method. This is especially true
near the boundaries of the domain. This property is not
reaily surprising if we consider that the second method
combines some aspects of the first method with some ideas
of the advancing front techniques, the latter giving their best
near the boundaries of the domain.

At present, it is possible to control the size of the
triangular elements but not their shape. An extension of the
point insertion strategy in order to generate anisotropic
point distributions does not seem to be difficult. Never-
theless, the natural tendency of the Delaunay triangulation
to generate triangles that are as equilateral as possible could
prevent the construction of highly stretched meshes. Further

. S. REBAY

investigations are required to address this issuc. More
work is also needed to extend the method to treat three-
dimensional domains of complex geometry for large-scale,
real-life applications of industrial interest.
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